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Dermatologist-level classification of skin cancer 
with deep neural networks
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Skin cancer, the most common human malignancy1–3, is primarily 
diagnosed visually, beginning with an initial clinical screening 
and followed potentially by dermoscopic analysis, a biopsy and 
histopathological examination. Automated classification of skin 
lesions using images is a challenging task owing to the fine-grained 
variability in the appearance of skin lesions. Deep convolutional 
neural networks (CNNs)4,5 show potential for general and highly 
variable tasks across many fine-grained object categories6–11. 
Here we demonstrate classification of skin lesions using a single 
CNN, trained end-to-end from images directly, using only pixels 
and disease labels as inputs. We train a CNN using a dataset of 
129,450 clinical images—two orders of magnitude larger than 
previous datasets12—consisting of 2,032 different diseases. We 
test its performance against 21 board-certified dermatologists on 
biopsy-proven clinical images with two critical binary classification 
use cases: keratinocyte carcinomas versus benign seborrheic 
keratoses; and malignant melanomas versus benign nevi. The first 
case represents the identification of the most common cancers, the 
second represents the identification of the deadliest skin cancer. 
The CNN achieves performance on par with all tested experts 
across both tasks, demonstrating an artificial intelligence capable 
of classifying skin cancer with a level of competence comparable to 
dermatologists. Outfitted with deep neural networks, mobile devices 
can potentially extend the reach of dermatologists outside of the 
clinic. It is projected that 6.3 billion smartphone subscriptions will 
exist by the year 2021 (ref. 13) and can therefore potentially provide 
low-cost universal access to vital diagnostic care.

There are 5.4 million new cases of skin cancer in the United States2 
every year. One in five Americans will be diagnosed with a cutaneous 
malignancy in their lifetime. Although melanomas represent fewer than 
5% of all skin cancers in the United States, they account for approxi-
mately 75% of all skin-cancer-related deaths, and are responsible for 
over 10,000 deaths annually in the United States alone. Early detection 
is critical, as the estimated 5-year survival rate for melanoma drops 
from over 99% if detected in its earliest stages to about 14% if detected 
in its latest stages. We developed a computational method which may 
allow medical practitioners and patients to proactively track skin 
lesions and detect cancer earlier. By creating a novel disease  taxonomy, 
and a disease-partitioning algorithm that maps  individual diseases into 
training classes, we are able to build a deep learning  system for auto-
mated dermatology.

Previous work in dermatological computer-aided classification12,14,15 
has lacked the generalization capability of medical practitioners 
owing to insufficient data and a focus on standardized tasks such as 
 dermoscopy16–18 and histological image classification19–22. Dermoscopy 
images are acquired via a specialized instrument and histological 
images are acquired via invasive biopsy and microscopy; whereby 
both modalities yield highly standardized images. Photographic 

images (for example, smartphone images) exhibit variability in  factors 
such as zoom, angle and lighting, making classification substantially 
more challenging23,24. We overcome this challenge by using a data-
driven approach—1.41 million pre-training and training images 
make  classification robust to photographic variability. Many previous 
techniques require extensive preprocessing, lesion segmentation and 
extraction of domain-specific visual features before classification. By 
contrast, our system requires no hand-crafted features; it is trained 
end-to-end directly from image labels and raw pixels, with a single 
network for both photographic and dermoscopic images. The  existing 
body of work uses small datasets of typically less than a thousand 
images of skin lesions16,18,19, which, as a result, do not generalize well 
to new images. We demonstrate generalizable classification with a new 
 dermatologist-labelled dataset of 129,450 clinical images, including 
3,374 dermoscopy images.

Deep learning algorithms, powered by advances in computation 
and very large datasets25, have recently been shown to exceed human 
 performance in visual tasks such as playing Atari games26,  strategic 
board games like Go27 and object recognition6. In this paper we 
 outline the development of a CNN that matches the  performance of 
 dermatologists at three key diagnostic tasks:  melanoma  classification, 
 melanoma classification using dermoscopy and  carcinoma 
 classification. We restrict the comparisons to image-based classification.

We utilize a GoogleNet Inception v3 CNN architecture9 that was pre-
trained on approximately 1.28 million images (1,000 object categories) 
from the 2014 ImageNet Large Scale Visual Recognition Challenge6, 
and train it on our dataset using transfer learning28. Figure 1 shows the 
working system. The CNN is trained using 757 disease classes. Our 
dataset is composed of dermatologist-labelled images organized in a 
tree-structured taxonomy of 2,032 diseases, in which the  individual 
diseases form the leaf nodes. The images come from 18 different 
 clinician-curated, open-access online repositories, as well as from  
clinical data from Stanford University Medical Center. Figure 2a shows 
a subset of the full taxonomy, which has been organized clinically and 
visually by medical experts. We split our dataset into 127,463 training 
and validation images and 1,942 biopsy-labelled test images.

To take advantage of fine-grained information contained within the 
taxonomy structure, we develop an algorithm (Extended Data Table 1)  
to partition diseases into fine-grained training classes (for  example, 
amelanotic melanoma and acrolentiginous melanoma). During 
 inference, the CNN outputs a probability distribution over these fine 
classes. To recover the probabilities for coarser-level classes of interest 
(for example, melanoma) we sum the probabilities of their descendants 
(see Methods and Extended Data Fig. 1 for more details).

We validate the effectiveness of the algorithm in two ways, using 
nine-fold cross-validation. First, we validate the algorithm using a 
three-class disease partition—the first-level nodes of the taxonomy, 
which represent benign lesions, malignant lesions and non-neoplastic 
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lesions. In this task, the CNN achieves 72.1 ±  0.9% (mean ±  s.d.)  overall 
accuracy (the average of individual inference class accuracies) and two 
dermatologists attain 65.56% and 66.0% accuracy on a subset of the 
validation set. Second, we validate the algorithm using a nine-class 
disease partition—the second-level nodes—so that the diseases of 
each class have similar medical treatment plans. The CNN achieves 
55.4 ±  1.7% overall accuracy whereas the same two dermatologists 
attain 53.3% and 55.0% accuracy. A CNN trained on a finer disease 
partition performs better than one trained directly on three or nine 
classes (see Extended Data Table 2), demonstrating the effectiveness 
of our partitioning algorithm. Because images of the validation set are 
labelled by dermatologists, but not necessarily confirmed by biopsy, 
this metric is inconclusive, and instead shows that the CNN is learning 
relevant information.

To conclusively validate the algorithm, we tested, using only 
 biopsy-proven images on medically important use cases, whether 
the algorithm and dermatologists could distinguish malignant versus 
benign lesions of epidermal (keratinocyte carcinoma compared to 
benign seborrheic keratosis) or melanocytic (malignant melanoma 
compared to benign nevus) origin. For melanocytic lesions, we show 

two trials, one using standard images and the other using dermoscopy 
images, which reflect the two steps that a dermatologist might carry out 
to obtain a clinical impression. The same CNN is used for all three tasks. 
Figure 2b shows a few example images, demonstrating the difficulty in 
distinguishing between malignant and benign lesions, which share many 
visual features. Our comparison metrics are sensitivity and specificity:

=sensitivity
true positive

positive

=specificity
true negative

negative

where ‘true positive’ is the number of correctly predicted malignant 
lesions, ‘positive’ is the number of malignant lesions shown, ‘true neg-
ative’ is the number of correctly predicted benign lesions, and ‘neg-
ative’ is the number of benign lesions shown. When a test set is fed 
through the CNN, it outputs a probability, P, of malignancy, per image.  
We can compute the sensitivity and specificity of these probabilities 

Acral-lentiginous melanoma
Amelanotic melanoma
Lentigo melanoma
…

Blue nevus
Halo nevus
Mongolian spot
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Training classes (757)Deep convolutional neural network (Inception v3) Inference classes (varies by task) 
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Figure 1 | Deep CNN layout. Our classification technique is a  
deep CNN. Data flow is from left to right: an image of a skin lesion  
(for example, melanoma) is sequentially warped into a probability 
distribution over clinical classes of skin disease using Google Inception  
v3 CNN architecture pretrained on the ImageNet dataset (1.28 million 
images over 1,000 generic object classes) and fine-tuned on our own 
dataset of 129,450 skin lesions comprising 2,032 different diseases.  
The 757 training classes are defined using a novel taxonomy of skin disease 
and a partitioning algorithm that maps diseases into training classes 

(for example, acrolentiginous melanoma, amelanotic melanoma, lentigo 
melanoma). Inference classes are more general and are composed of one 
or more training classes (for example, malignant melanocytic lesions—the 
class of melanomas). The probability of an inference class is calculated by 
summing the probabilities of the training classes according to taxonomy 
structure (see Methods). Inception v3 CNN architecture reprinted 
from https://research.googleblog.com/2016/03/train-your-own-image-
classifier-with.html
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Figure 2 | A schematic illustration of the taxonomy and example test 
set images. a, A subset of the top of the tree-structured taxonomy of skin 
disease. The full taxonomy contains 2,032 diseases and is organized based 
on visual and clinical similarity of diseases. Red indicates malignant, 
green indicates benign, and orange indicates conditions that can be either. 
Black indicates melanoma. The first two levels of the taxonomy are used in 
validation. Testing is restricted to the tasks of b. b, Malignant and benign 

example images from two disease classes. These test images highlight the 
difficulty of malignant versus benign discernment for the three medically 
critical classification tasks we consider: epidermal lesions, melanocytic 
lesions and melanocytic lesions visualized with a dermoscope. Example 
images reprinted with permission from the Edinburgh Dermofit Library 
(https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html).
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by choosing a threshold probability t and defining the prediction ŷ for 
each image as ŷ = P ≥ t. Varying t in the interval 0–1 generates a curve 
of sensitivities and specificities that the CNN can achieve.

We compared the direct performance of the CNN and at least 
21 board-certified dermatologists on epidermal and melanocytic 

lesion classification (Fig. 3a). For each image the dermatologists 
were asked whether to biopsy/treat the lesion or reassure the patient. 
Each red point on the plots represents the sensitivity and specificity 
of a  single  dermatologist. The CNN outperforms any dermatologist 
whose  sensitivity and specificity point falls below the blue curve of 
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Figure 3 | Skin cancer classification performance of the CNN and 
dermatologists. a, The deep learning CNN outperforms the average of 
the dermatologists at skin cancer classification using photographic and 
dermoscopic images. Our CNN is tested against at least 21 dermatologists 
at keratinocyte carcinoma and melanoma recognition. For each test, 
previously unseen, biopsy-proven images of lesions are displayed, and 
dermatologists are asked if they would: biopsy/treat the lesion or reassure 
the patient. Sensitivity, the true positive rate, and specificity, the true 
negative rate, measure performance. A dermatologist outputs a single 
prediction per image and is thus represented by a single red point. The 
green points are the average of the dermatologists for each task, with 
error bars denoting one standard deviation (calculated from n =  25, 22 
and 21 tested dermatologists for keratinocyte carcinoma, melanoma 
and melanoma under dermoscopy, respectively). The CNN outputs a 
malignancy probability P per image. We fix a threshold probability t 

such that the prediction ŷ for any image is ŷ = P ≥ t, and the blue curve is 
drawn by sweeping t in the interval 0–1. The AUC is the CNN’s measure 
of performance, with a maximum value of 1. The CNN achieves superior 
performance to a dermatologist if the sensitivity–specificity point of 
the dermatologist lies below the blue curve, which most do. Epidermal 
test: 65 keratinocyte carcinomas and 70 benign seborrheic keratoses. 
Melanocytic test: 33 malignant melanomas and 97 benign nevi. A second 
melanocytic test using dermoscopic images is displayed for comparison: 
71 malignant and 40 benign. The slight performance decrease reflects 
differences in the difficulty of the images tested rather than the diagnostic 
accuracies of visual versus dermoscopic examination. b, The deep learning 
CNN exhibits reliable cancer classification when tested on a larger dataset.  
We tested the CNN on more images to demonstrate robust and reliable 
cancer classification. The CNN’s curves are smoother owing to the larger 
test set.

Squamous cell carcinomas

Basal cell carcinomas 

Nevi
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Melanocytic benign
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Figure 4 | t-SNE visualization of the last hidden layer representations 
in the CNN for four disease classes. Here we show the CNN’s internal 
representation of four important disease classes by applying t-SNE,  
a method for visualizing high-dimensional data, to the last hidden layer 
representation in the CNN of the biopsy-proven photographic test sets 

(932 images). Coloured point clouds represent the different disease 
categories, showing how the algorithm clusters the diseases. Insets show 
images corresponding to various points. Images reprinted with permission 
from the Edinburgh Dermofit Library (https://licensing.eri.ed.ac.uk/i/
software/dermofit-image-library.html).
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the CNN, which most do. The green points represent the average 
of the dermatologists (average sensitivity and specificity of all red 
points), with error bars denoting one standard deviation. The area 
under the curve (AUC) for each case is over 91%. The images for this 
 comparison (135  epidermal, 130 melanocytic and 111 melanocytic 
 dermoscopy images) are  sampled from the full test sets. The sensitivity 
and  specificity curves for our entire test set of biopsy-labelled images 
 comprised 707 epidermal, 225 melanocytic and 1,010 melanocytic 
 dermoscopy images (Fig. 3b). We observed negligible changes in AUC  
(< 0.03) when we compared the sample dataset (Fig. 3a) with the full 
dataset (Fig. 3b), validating the reliability of our results on a larger 
dataset. In a separate analysis with similar results (see Methods) 
 dermatologists were asked whether they thought a lesion was  malignant 
or benign.

We examined the internal features learned by the CNN using t-SNE 
(t-distributed Stochastic Neighbour Embedding)29 (Fig. 4). Each point 
represents a skin lesion image projected from the 2,048-dimensional 
output of the CNN’s last hidden layer into two dimensions. We see 
 clusters of points of the same clinical classes (Fig. 4, insets show images 
of different diseases). Basal and squamous cell carcinomas are split 
across the malignant epidermal point cloud. Melanomas cluster in 
the centre, in contrast to nevi, which cluster on the right. Similarly, 
 seborrheic keratoses cluster opposite to their malignant counterparts.

Here we demonstrate the effectiveness of deep learning in derma-
tology, a technique that we apply to both general skin conditions and 
specific cancers. Using a single convolutional neural network trained 
on general skin lesion classification, we match the performance of at 
least 21 dermatologists tested across three critical  diagnostic tasks: 
keratinocyte  carcinoma classification, melanoma classification and 
 melanoma  classification using dermoscopy. This fast, scalable method 
is  deployable on mobile devices and holds the potential for substan-
tial clinical impact, including broadening the scope of primary care 
practice and augmenting clinical decision-making for dermatology 
specialists. Further research is necessary to evaluate performance in 
a real-world, clinical setting, in order to validate this technique across 
the full distribution and spectrum of lesions encountered in typical 
practice. Whilst we acknowledge that a dermatologist’s clinical impres-
sion and diagnosis is based on contextual factors beyond visual and 
dermoscopic inspection of a lesion in isolation, the ability to classify 
skin lesion images with the accuracy of a board-certified dermatologist 
has the potential to profoundly expand access to vital medical care. 
This method is primarily constrained by data and can classify many 
visual conditions if sufficient training examples exist. Deep learning is 
agnostic to the type of image data used and could be adapted to other 
specialties, including ophthalmology, otolaryngology, radiology and 
pathology.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethODs
Datasets. Our dataset comes from a combination of open-access dermatology 
repositories, the ISIC Dermoscopic Archive, the Edinburgh Dermofit Library22 
and data from the Stanford Hospital. The images from the online open-access 
 dermatology repositories are annotated by dermatologists, not necessarily through 
biopsy. The ISIC Archive data used are composed strictly of melanocytic lesions 
that are biopsy-proven and annotated as malignant or benign. The Edinburgh 
Dermofit Library and data from the Stanford Hospital are biopsy-proven and 
annotated by individual disease names (that is, actinic keratosis). In our test sets, 
melanocytic lesions include malignant melanomas—the deadliest skin cancer—
and benign nevi. Epidermal lesions include malignant basal and squamous cell 
carcinomas, intraepithelial carcinomas, pre-malignant actinic keratosis and benign 
seborrheic keratosis.
Taxonomy. Our taxonomy represents 2,032 individual diseases arranged in 
a tree structure with three root nodes representing general disease classes:  
(1) benign lesions, (2) malignant lesions and (3) non-neoplastic lesions (Fig. 2b). It 
was derived by dermatologists using a bottom-up procedure: individual  diseases, 
initialized as leaf nodes, were merged based on clinical and visual similarity, 
until the entire structure was connected. This aspect of the taxonomy is useful in 
 generating training classes that are both well-suited for machine learning classifiers 
and medically relevant. The root nodes are used in the first validation strategy 
and represent the most general partition. The children of the root nodes (that is, 
malignant melanocytic lesions) are used in the second validation strategy, and 
represent disease classes that have similar clinical treatment plans.
Data preparation. Blurry images and far-away images were removed from the 
test and validation sets, but were still used in training. Our dataset contains sets of 
images corresponding to the same lesion but from multiple viewpoints, or  multiple 
images of similar lesions on the same person. While this is useful training data, 
extensive care was taken to ensure that these sets were not split between the  training 
and validation sets. Using image EXIF metadata, repository specific  information 
and nearest neighbour image retrieval with CNN features, we created an  undirected 
graph connecting any pair of images that were determined to be similar. Connected 
components of this graph were not allowed to straddle the train/validation split 
and were randomly assigned to either train or validation. The test sets all came 
from independent, high-quality repositories of biopsy-proven images—the 
Stanford Hospital, the University of Edinburgh Dermofit Image Library and  
the ISIC Dermoscopic Archive. No overlap (that is, same lesion, multiple 
 viewpoints) exists between the test sets and the training/validation data.
Sample selection. The epidermal, melanocytic and melanocytic-dermoscopic tests 
of Fig. 3a used 135 (65 malignant, 70 benign), 130 (33 malignant, 97 benign) and 
111 (71 malignant, 40 benign) images, respectively. Their counterparts of Fig. 3b 
used 707 (450 malignant, 257 benign), 225 (58 malignant, 167 benign), and 1,010 
(88 malignant, 922 benign) images, respectively. The number of images used for 
Fig. 3b was based on the availability of biopsy labelled data (that is, malignant 
melanocytic lesions are exceedingly rare compared to benign melanocytic lesions). 
These numbers are statistically justified by the standards of the ILSVRC computer 
vision challenge6, which has 50–100 images per class for validation and test sets. 
For Fig. 3a, 140 images were randomly selected from each set of Fig. 3b, and a 
non-tested dermatologist (blinded to diagnosis) removed any images of insufficient 
resolution (although the network accepts image inputs of 299 ×  299 pixels, the 
dermatologists required larger images for clarity).
Disease partitioning algorithm. The algorithm that partitions the individual 
 diseases into training classes is outlined more extensively in Extended Data Table 1.  
It is a recursive algorithm, designed to leverage the taxonomy to generate training 
classes whose individual diseases are clinically and visually similar. The  algorithm 
forces the average generated training class size to be slightly less than its only 
hyperparameter, maxClassSize. Together these components strike a balance 
between (1) generating training classes that are overly fine grained and that do 
not have sufficient data to be learned properly; (2) generating training classes 
that are too coarse, too data abundant and bias the algorithm towards them. With 
 maxClassSize = 1,000 this algorithm yields a disease partition of 757 classes. All 
training classes are descendants of inference classes.
Training algorithm. We use Google’s Inception v3 CNN architecture pretrained 
to 93.33% top-five accuracy on the 1,000 object classes (1.28 million images) of the 
2014 ImageNet Challenge following ref. 9. We then remove the final classification 
layer from the network and retrain it with our dataset, fine-tuning the parameters 
across all layers. During training we resize each image to 299 ×  299 pixels in order 
to make it compatible with the original dimensions of the Inception v3 network 
architecture and leverage the natural-image features learned by the ImageNet 

 pretrained network. This procedure, known as transfer learning, is optimal given 
the amount of data available.

Our CNN is trained using backpropagation. All layers of the network are fine-
tuned using the same global learning rate of 0.001 and a decay factor of 16 every 30 
epochs. We use RMSProp with a decay of 0.9, momentum of 0.9 and epsilon of 0.1. 
We use Google’s TensorFlow30 deep learning framework to train, validate and test 
our network. During training, images are augmented by a factor of 720. Each image 
is rotated randomly between 0° and 359°. The largest upright inscribed rectangle 
is then cropped from the image, and is flipped vertically with a probability of 0.5.
Inference algorithm. We follow the convention that each node contains its 
 children. Each training class is represented by a node in the taxonomy, and 
 subsequently, all descendants. Each inference class is a node that has as its 
 descendants a particular set of training nodes. An illustrative example is shown 
in Extended Data Fig. 1, with red nodes as inference classes and green nodes as 
training classes. Given an input image, the CNN outputs a probability distribution 
over the training nodes. Probabilities over the taxonomy follow:

∑=
∈

P u P v( ) ( )
v C u( )

where u is any node, P(u) is the probability of u, and C(u) are the child nodes of u.  
Therefore, to recover the probability of any inference node we simply sum the 
probabilities of its descendant training nodes. Note that in the validation  strategies 
all training classes are summed into inference classes. However in the binary 
 classification cases, the images in question are known to be either melanocytic or 
epidermal and so we utilize only the training classes that are descendants of either 
melanocytic or epidermal classes.
Confusion matrices. Extended Data Fig. 2 shows the confusion matrix of our 
method over the nine classes of the second validation strategy (Extended Data 
Table 2d) in comparison to the two tested dermatologists. This demonstrates the 
misclassification similarity between the CNN and human experts. Element (i, j) 
of each confusion matrix represents the empirical probability of  predicting class 
j given that the ground truth was class i. Classes 7 and 8—benign and  malignant 
 melanocytic lesions—are often confused with each other. Many images are 
 mistaken as class 6, the inflammatory class, owing to the high variability of  diseases 
in this category. Note how easily malignant dermal tumours are confused for 
other classes, by both the CNN and dermatologists. These tumours are essentially 
 nodules under the skin that are challenging to visually diagnose.
Saliency maps. To visualize the pixels that a network is fixating on for its 
 prediction, we generate saliency maps, shown in Extended Data Fig. 3, for  example 
images of the nine classes of Extended Data Table 2d. Backpropagation is an 
 application of the chain rule of calculus to compute loss gradients for all weights 
in the network. The loss gradient can also be backpropagated to the input data layer. 
By taking the L1 norm of this input layer loss gradient across the RGB channels, the 
resulting heat map intuitively represents the importance of each pixel for diagnosis. 
As can be seen, the network fixates most of its attention on the lesions themselves 
and ignores background and healthy skin.
Sensitivity–specificity curves with different questions. In the main text we 
 compare our CNN’s sensitivity and specificity to that of at least 21  dermatologists 
on the three diagnostic tasks of Fig. 3. For this analysis each  dermatologist 
was asked if they would biopsy/treat the lesion or reassure the patient. This 
choice of question reflects the actual in-clinic task that dermatologists must 
perform— deciding whether or not to continue medically analysing a lesion.  
A similar  question to ask a dermatologist, though less clinically relevant, is if they 
believe a lesion is malignant or benign. The results of this analysis are shown in 
Extended Data Fig. 4. As in Fig. 3, the CNN is on par with the performance of the 
 dermatologists and outperforms the average. In the epidermal lesions test, the CNN 
is just above one standard deviation above the average of the dermatologists, and in 
both melanocytic lesion tests the CNN is just below one standard deviation above 
the average of the dermatologists.
Use of human subjects. All human subjects were board-certified  dermatologists 
that took our tests under informed consent. This study was approved by the 
Stanford Institutional Review Board, under trial registration number 36050.
Data availability statement. The medical test sets that support the findings of 
this study are available from the ISIC Archive (https://isic-archive.com/) and the 
Edinburgh Dermofit Library (https://licensing.eri.ed.ac.uk/i/software/ dermofit-
image-library.html). Restrictions apply to the availability of the medical training/
validation data, which were used with permission for the current study, and so 
are not publicly available. Some data may be available from the authors upon 
 reasonable request and with permission of the Stanford Hospital.
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Extended Data Figure 1 | Procedure for calculating inference class 
probabilities from training class probabilities. Illustrative example  
of the inference procedure using a subset of the taxonomy and mock 
training/inference classes. Inference classes (for example, malignant and 
benign lesions) correspond to the red nodes in the tree. Training  
classes (for example, amelanotic melanoma, blue nevus), which were 
determined using the partitioning algorithm with maxClassSize = 1,000, 
correspond to the green nodes in the tree. White nodes represent either 
nodes that are contained in an ancestor node’s training class  

or nodes that are too large to be individual training classes. The equation 
represents the relationship between the probability of a parent node, u,  
and its children, C(u); the sum of the child probabilities equals the 
probability of the parent. The CNN outputs a distribution over the  
training nodes. To recover the probability of any inference node it 
therefore suffices to sum the probabilities of the training nodes that  
are its descendants. A numerical example is shown for the benign 
inference class: Pbenign = 0.6 = 0.1 +  0.05 +  0.05 +  0.3 +  0.02 +  0.03 +  0.05.
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Extended Data Figure 2 | Confusion matrix comparison between 
CNN and dermatologists. Confusion matrices for the CNN and both 
dermatologists for the nine-way classification task of the second validation 
strategy reveal similarities in misclassification between human experts and 
the CNN. Element (i, j) of each confusion matrix represents the empirical 
probability of predicting class j given that the ground truth was class  
i, with i and j referencing classes from Extended Data Table 2d. Note that 
both the CNN and the dermatologists noticeably confuse benign and 
malignant melanocytic lesions—classes 7 and 8—with each other, with 

dermatologists erring on the side of predicting malignant. The distribution 
across column 6—inflammatory conditions—is pronounced in all three 
plots, demonstrating that many lesions are easily confused with this class. 
The distribution across row 2 in all three plots shows the difficulty of 
classifying malignant dermal tumours, which appear as little more than 
cutaneous nodules under the skin. The dermatologist matrices are each 
computed using the 180 images from the nine-way validation set. The 
CNN matrix is computed using a random sample of 684 images (equally 
distributed across the nine classes) from the validation set.
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Extended Data Figure 3 | Saliency maps for nine example images from 
the second validation strategy. a–i, Saliency maps for example images 
from each of the nine clinical disease classes of the second validation 
strategy reveal the pixels that most influence a CNN’s prediction. Saliency 
maps show the pixel gradients with respect to the CNN’s loss function. 
Darker pixels represent those with more influence. We see clear correlation 
between the lesions themselves and the saliency maps. Conditions with a 
single lesion (a–f) tend to exhibit tight saliency maps centred around  
the lesion. Conditions with spreading lesions (g–i) exhibit saliency  
maps that similarly occupy multiple points of interest in the images.  
a, Malignant melanocytic lesion (source image: https://www.dermquest.
com/imagelibrary/large/020114HB.JPG). b, Malignant epidermal 

lesion (source image: https://www.dermquest.com/imagelibrary/
large/001883HB.JPG). c, Malignant dermal lesion (source image:  
https://www.dermquest.com/imagelibrary/large/019328HB.JPG).  
d, Benign melanocytic lesion (source image: https://www.dermquest.com/
imagelibrary/large/010137HB.JPG). e, Benign epidermal lesion (source 
image: https://www.dermquest.com/imagelibrary/large/046347HB.JPG). 
f, Benign dermal lesion (source image: https://www.dermquest.com/
imagelibrary/large/021553HB.JPG). g, Inflammatory condition (source 
image: https://www.dermquest.com/imagelibrary/large/030028HB.
JPG). h, Genodermatosis (source image: https://www.dermquest.com/
imagelibrary/large/030705VB.JPG). i, Cutaneous lymphoma (source 
image: https://www.dermquest.com/imagelibrary/large/030540VB.JPG).
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Extended Data Figure 4 | Extension of Figure 3 with a different 
dermatological question. a, Identical plots and results as shown in Fig. 3a, 
except that dermatologists were asked if a lesion appeared to be malignant 
or benign. This is a somewhat unnatural question to ask, in the clinic, the 

only actionable decision is whether or not to biopsy or treat a lesion. The 
blue curves for the CNN are identical to Fig. 3. b, Figure 3b reprinted for 
visual comparison to a.
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extended Data table 1 | Disease-partitioning algorithm

This algorithm uses the taxonomy to partition the diseases into fine-grained training classes. We find that training on these finer classes improves the classification accuracy of coarser inference  
classes. The algorithm begins with the top node and recursively descends the taxonomy (line 19), turning nodes into training classes if the amount of data contained in them (with the convention  
that nodes contain their children) does not exceed a specified threshold (line 15). During partitioning, the recursive property maintains the taxonomy structure, and consequently, the clinical similarity 
between different diseases grouped into the same training class. The data restriction (and the fact that training data are fairly evenly distributed amongst the leaf nodes) forces the average class size 
to be slightly less than maxClassSize. Together these components generate training classes that leverage the fine-grained information contained in the taxonomy structure while striking a balance 
between generating classes that are overly fine-grained and do not have sufficient data to be learned properly, and classes that are too coarse, too data abundant and that prevent the algorithm from 
properly learning less data-abundant classes. With maxClassSize = 1,000 this algorithm yields 757 training classes.
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extended Data table 2 | General validation results

Here we show ninefold cross-validation classification accuracy with 127,463 images organized in two different strategies. In each fold, a different ninth of the dataset is used for validation, and the rest 
is used for training. Reported values are the mean and standard deviation of the validation accuracy across all n = 9 folds. These images are labelled by dermatologists, not necessarily through biopsy; 
meaning that this metric is not as rigorous as one with biopsy-proven images. Thus we only compare to two dermatologists as a means to validate that the algorithm is learning relevant information. 
a, Three-way classification accuracy comparison between algorithms and dermatologists. The dermatologists are tested on 180 random images from the validation set—60 per class. The three 
classes used are first-level nodes of our taxonomy. A CNN trained directly on these three classes also achieves inferior performance to one trained with our partitioning algorithm (PA). b, Nine-way 
classification accuracy comparison between algorithms and dermatologists. The dermatologists are tested on 180 random images from the validation set—20 per class. The nine classes used are the 
second-level nodes of our taxonomy. A CNN trained directly on these nine classes achieves inferior performance to one trained with our partitioning algorithm. c, Disease classes used for the three-way 
classification represent highly general disease classes. d, Disease classes used for nine-way classification represent groups of diseases that have similar aetiologies.
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